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In this article the theory of partition chromatography from earlier work’-3 is 
generalized by using a stepwise approach in the diffusion model treatment of the 
partition process, In the earlier theory, the diffusion node14 was applied as a first 
order approximation, as it considered a single stationary phase of uniform concen- 
tration, and thus did not take into account the solute distribution in that phase. 
If, for example, the column filling consists of spherical beads, a rigorous treatment 
must take into account the time-dependent radial concentration distribution in a 
sphere, resulting from diffusion between the sphere and the surrounding medium. 
Although diffusion into a sphere may be treated rigorously for some special casesG, 
the resulting formulae have the form of slowly convergent infinite series which are 
unsuitable for use in chromatographic theory. However, by generalizing the diffusion 
model the rigorous treatment may be approached and the theory of chromatography 
brought to a high degree of perfection. In the generalized model, the beads are divided 
into concentric shells and the diffusion model applied to consecutive shells, the con- 
centration in each shell being taken as uniform. Thus, in analogy with the earlier 
model, each shell is considered as constituting a separate phase, and assigned its 
own concentration variable. An essential feature of the model is the fact that direct 
exchange of solute can only take place between two adjacent. phases. A pictorial 
representation of the model is shown in Fig. L. 

Fig. I. Schematic representation of a three-step column model. 

For this model the differential equations for column operation may now be 
written down, In order to simplify the treatment, at first only three phases are con- 
sidered, the generalization to an arbitrary number of phases being undertaken later, 

,,’ Also, longitudinal diffusion in the stationary phase is omitted, as in most practical 
cases it is incompatible with the column model (this is the case when the column 
filling consists of particles with small dimensions in the axial direction of the column, 
as the particles are then surrounded by a solution of uniform concentration), In 
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other respects the model is completely general and takes into account variations in 
partition and diffusion coefficients within the particles. With these premises the 
following equations are obtained : 

af a2f .a - af 
al = a_+ --“~-I- 7; (g - Yl2f 1 

The symbols have the following meaning: 

(3) 

f ,A 
g = 
It r= 

;; 

= 

= 

v,“, v2, v, = 

Yl.2, y23 = partition coefficients between the different phases; 
aa2, a23 = diffusion factors between different phases. 

concentration of solute in the mobile phase ; 

concentration of solute in the first shell of the stationary phase; 
concentration of solute in the second shell of the stationary phase ; 

translational velocity of the mobile phase ; 

diffusion coefficient in the mobile phase ; 

volumes of the different phases per unit of interphase area between t 
mobile and stationary phase ; 

he 

The factors asd warrant some discussion here. The factor a12, referring to diffu- 
sion between the mobile phase and the first stationary phase, is obviously unchanged 
from the earlier theory. Hence: 

2D2 
a12 = - 

v2 
(4)’ 

For a23, however, some new features appear. In the first place, rate determining 
diffusion now occurs in both phases, with diffusion coefficients D2 and D3 respectively. 
In the second place the capacity elements in the diffusion model are the volumes 
of the respective phases per unit of interphase area. They are here designated V33 and 
'T/33 and are obviously different from V2 and V,, which are the per area volumes with 
respect to the first phase boundary. A value for a23 may be constructed by analogy 
to eqn. (4) by taking averages for both V33, V33 and D,, .D3. Furthermore, the factor 2 
is omitted because the rate determining diffusion occurs in both phases, Hence: 

D2 -I- B3 
423 = ---- 

v23 + v32 
(5) 

Although it is derived in a somewhat arbitrary manner, it is felt that .this 
formula gives a reasonably good approximation of diffusion between adjacent shells 
in a particle. Obviously the approximation is better the smaller the spacing between 
the shells. 
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APPLICATION OF THE MOMENT METHOD 

Equations (I)-(3) may be solved by the application of the moment method3. 
The i-th moment of the concentration 
as follows : 

distribution in the cliff erent. phases is defined 

Hc = J- x’hdx 
n 

where u and b are points on either side of the peak in regions where the concentration 
is zero. 

Following the procedure in ref. 3 we get for the first three moments the fol- 
lowing systems of cliff erential equations. 

. 
I;;, - 9; (Go - y12Eo) = 0 

. 
Go + y2 (Go - r12Fo) -$: (Ho - yzaGo) = 0 

--23GO) = 0 

(7) 

(5) 

(9) 

First monzent : 

. 
Fl - F (Gl - y12F1) = vFo 

2, + al2 
v, (‘3 - ~12F1) --23Gl) = 0 

E;T1 + a23 
-$Hl - Y23Gl) = 0 

Second nzonam!: 

I;z ’ -T (G2 - rlzF2) = 2 DlFo + 2 VFI 

k2 + '% 
v2tG 

2 -y12l;z) -f$H2 - Y23G2) = 0 

--23G2) = Cl 

These equations are first order linear differential equations with constant 
coeff!cients and may be solved by standard methods. The general solution’is obtained 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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by adding the solution of the corresponding homogeneous system to a particular 
solution of the system. We are here only concerned with the steady state solutions 
IQ, -LI and M.I, which are obtained by deleting the exponential terms in the general 
solution. They are readily determined by the method of undetermined coefhcients. 

The equation system for the zeroth moment is homogeneous, hence I<,, _L, and 
M, are constants; Substituting into (7)-(g) and using the material balance eqn. (x6), 

‘VI& + TrZLo + V3Mo = C (I@ 

we get : 

LO = YlZICO (17) 

MO = y23LO 

C K. = ------- 
vl + 7'12 (1'2 + Y231'3) 

(19) 

The first moments are now obtained from eqns. (IO)-(x2), where F, in (IO) is 
replaced by I<, from (19). The solutions may be written in’the form: 

Kl. = 121.1 -j- 12 (20) 

L1 = 1J.t + I (21) 

Ml = nalt f wa (22) 

where the constants on the right hand side of the equations are evaluated by inser- 
tion into (IO)-(12) and identification of the coef%cients. The following results are 
obtained, expressed in terms of the reduced moments for the respective phases: 

& 
iAf = x = - 

I 

-$-+-y-~3 2 + C’ 

+ y12 L---- 
Vl 

Ll 
pu = z = #My-- 

ZJ (v2 + Y23v3) _-__---- 

v2 + y23v3 
1 + Yl2 ---- 

VI 

Ml vv3 
p/b := ji-& = &f - ---_e______ 

v2 + y231', 
I -I- y12 ----- 

Vl 

(23) 

(24) 

(25) 

where C’ is the integration constant. 
Finally, the second moments are obtained from eqns. ( 13)-(IS), where I;, and F, 

in (13) are replaced by K. and I<, from (19) and (23) respectively. Here the solutions 
take the form : 

K2 = Iz'212 + 12'12 _t k' (26) 

12 = 2'2l2 -j- Z'llf f E' 

M2 = 132'2/2 + llZRll! -1_ 
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and the constants on the right hand side are evaluated as above. Here the result is 
stated in the form of the variance for the concentration distribution in the mobile 
phase, which may be written in the form : 

K2 1112 

p2 = xi 
- - = 2 Dir + conk 

A-$ (29) 

where : 

D 
Dl = D’ + J-J” = --__-___ + 

V2Y12 
' v2 -i- y23v3 

I +y~2----- 
VI 

tvZ + Y23v3)' + y23v32 ----- -- 
a12 a23 

(30) 

The formulae for a general qz-step model may now be obtained from the above 
formulae by induction. In all formulae we have to make the successive substitutions: 

Further, for every step the expression in the brackets of (30) has to be supple- 
mented with the term: 

(32) 

CONCLUSIONS 

The laws of chromatography may now be formulated for the generalized 
partition chromatography column. 

Beginning with the zeroth moments, which determine the amount of solute 
in the different phases, we find them to be constants, independent of the velocity 
of the mobile phase. Thus, under steady state conditions the solute distribution 
between the different phases is the same as under static equilibrium conditions. 

The first moments determined the location of the peaks in the chromatographic 
column. The peaks in the different phases are displaced relative to each other, the 
magnitudes of the displacements being given by eqns. (24) and (25). For all peaks the 
relative peak velocity v has the value: 

G I 
2, = - = VA---A__ 

V v2 f y23'113 
(33) 

I +yl2----- 
VI 

A comparison with (rg) shows that v is simply the fraction of solute in the 
mobile phase T/&,/C. The laws governing the behaviour of the zeroth and first mo- 
ments may thus be stated independently of the model and are to be considered as 
fundamental laws of chromatography. 

J. Chyomatog., 25 (1966) 71-79 



76 EL -tiINK 

The variance is a measure of the width of a peak. It increases linearly with 
time and may be expressed in terms of a spreading coefficient D, eqn. (29). It consists 
of two terms, The first, D’, is due to longitudinal diffusion in the mobile phase and 
equals the diffusion coefficient multiplied by the fraction of solute in the mobile 
phase. Even this term is independent of the column model. The second term, D”, is 
the chromatographic dispersion. Here the generalized model yields a result different 
from the original model. We will consider this difference more closely for the special 
case of a column filling consisting of spherical particles. To specify the model we con- 
sider particles of uniform size and material. Then: 

y12 = y 

y33 = 1 

D2 = D3 

If we’ divide the particles into two concentric shells and denote the radius 
of the particle by yJ. and that of the core by y2 and use the symbols V’, and V’, for the 
volume parameters of the original model, we get 

y2 2 
v2= ; ( > v23 

IT3 = ?mf 
() 

2 

1132 
m. 

T/i -k V3 = TP2 = ; 

Further we have: 

413 z Y23 y2 
T73=----= _ 

4 n Y12 () 
3 2 = (Tq3 I/"2 

Yl 3 \Yl/ - 

Inserting from these 
with (4) and (s), we get: 

relations into the expression for D” in eqn. (30), together 

D” = _------_ (34) 

In eqn. (34), the first factor is the chromatographic dispersion for the original 
model and the second factor is unity for y2 = o and y2 = yl, and has the minimum 
value 0.8945 for y2/y1 = 0.75. 

We will next extend the treatment to the general +step model and evaluate 
D” in the lirnit as fz tends to infinity. We now have the relations: 

J. Chvonzalog., 2.5 (1966) 7X-79 



THEORY OF PARTITION CNROMATOGRAE’HV. IV. 77 

y12 = y 

y23 = . . . = Y71 - 1, n = I 

D2=D3= . . . ==D,, 

v/1. = V’, 

vk, k+l forts = 2, . . . . z - r 

and : 

With these relations we get the following expression for D” : 

jy” = _-vzY__ 

( 
V’2 3 

V’l 1 3 y - 
Vl ) 

To evaluate the series in 

V7l? --- + . . . ---- + --- . . . (35) 
a12 ah k f 1 an -1~ n 1 

the parenthesis we observe that: 

5 
I6 + I 

Vi = ; (2)” = V’2 

and: 
2 132 

(30) 

a/$., h’+1 = ------- 

Yl 2 (37) 

(V/c + v/G +I.) ylc ( ) 
Further, using equal spacing for consecutive shells, with yk-1 - qc = E, we get: 

4/3n(yk-.13- 
2 

Ii& = - w 2 .E Yk3) 

4 Tc Yl2 ( ) 
(35) 

yl. 

where the last relation holds as a first order approximation in E. Thus: 

and the general term in the series becomes: 

Taking the sum of the series and passing to limits, we get: 

v’22 ‘5’ -- -- 
D2 ylfJ IC = I 

Yka 8 
V’22 

,zo D2.,(-’ J 'Yl 

Q 
#I3 00 

(39) 

(40) 
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Hence : 

e v2 y V’23 
D”=_- --. 

O/7 

2 Dz’v’1 1 

(41) 

We thus find that the generalized model yields a somewhat smaller value for 
the chromatographic dispersion than the original single-step model. The deviation is 
small, however, being given by. the factor 0.8945 in the case of a two-step model, and 
by the factor 0.8571 for the continuous model. This demonstrates the rapid conver- 
gence of the results of the finite-step model and indicates that the original single- 
step model is an excellent approximation. 

Eqn. (30) may be used also to investigate the influence of film diffusion on the 
chromatographic process. Then the outermost shell is composed of pure solvent. 
This case is somewhat more complicated since VI is affected by the solvent shell, 

FRONTAL ANALYSIS 

So far we have only considered the behaviour of isolated peaks in a chromato- 
graphic column. As a remarkable extension of the theory we will now show that the 
above formulae are also valid in the case of frontal analysis, if the moments are de- 
fined for concentration gradients, instead of concentration distributions. Thus, in 
this case we define: 

(42) 

where a and b are points in the plateau regions on either side of the gradient peak. 
Taking derivatives with respect to time and assuming exchangeability in the 

order of derivation : 

a2f a2f -=- 
atax axat (43) 

we get: 

. 
Fi = J 

*I) 
dx; & = a ah 

a s dx; I& = j-i xt - (-) dx 
ax at 

(44) 

The derivatives with respect to time off, g and h may now be introduced from 
eqns. (I)-(3) and after partial integration eqns, (7)-(15) are reproduced. 

SUMMARY 

A generalized theory of partition chromatography is presented. It takes into 
account the lateral solute distribution in the stationary phase by using a stepwise 
approach in the treatment of the partition process. From this the continuous model 
is obtained in the limit of infinitesimal steps, The resulting differential equations are 
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solved by the moment method for steady state conditions. For the zeroth and first 
moments the results are shown to be independent of the specified model, whereas 
in the case of the second moment the generalized model yields a smaller spreading 
coefficient than the original single-step model. The moment method is shown to be 
equally applicable to frontal analysis, if the moments are defined in terms of concen- 
4ration gradients in this case. 
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